Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model
نویسندگان
چکیده
منابع مشابه
Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملEntropy Dissipative One-leg Multistep Time Approximations of Nonlinear Diffusive Equations
New one-leg multistep time discretizations of nonlinear evolution equations are investigated. The main features of the scheme are the preservation of the nonnegativity and the entropy-dissipation structure of the diffusive equations. The key ideas are to combine Dahlquist’s G-stability theory with entropy-dissipation methods and to introduce a nonlinear transformation of variables which provide...
متن کاملPositivity and boundedness preserving schemes for space-time fractional predator-prey reaction-diffusion model
The semi-implicit schemes for the nonlinear predator-prey reactiondiffusion model with the space-time fractional derivatives are discussed, where the space fractional derivative is discretized by the fractional centered difference and WSGD scheme. The stability and convergence of the semi-implicit schemes are analyzed in the L∞ norm. We theoretically prove that the numerical schemes are stable ...
متن کاملFlux form Semi-Lagrangian methods for parabolic problems
A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and convergence analysis are proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 93 شماره
صفحات -
تاریخ انتشار 2003